Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Res ; 53(4): 370-376, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36461886

RESUMO

AIM: Congestive hepatopathy often leads to liver fibrosis and hepatocellular carcinoma. Imaging modalities provided clinical evidence that elevation of liver stiffness and tumor occurrence are mainly induced in the periphery of the liver in patients with congestive hepatopathy. However, clinical relevance of liver stiffness and liver fibrosis is unclear because liver congestion itself increases liver stiffness in congestive hepatopathy. It also unclear which factors configure such regional disparity of tumor development in patients with congestive hepatopathy. To answer these questions, we evaluated the macroscopic spatial distribution of liver fibrosis and tumors in the murine model of congestive hepatopathy. METHODS: Chronic liver congestion was induced by partial ligation of the suprahepatic inferior vena cava. Distribution of liver congestion, fibrosis, and tumors in partial ligation of the suprahepatic inferior vena cava mice were assessed by histological findings, laser microdissection (LMD)-based qPCR and enhanced computed tomography. LMD-based RNA-sequencing was performed to identify causal factors that promote tumor development in congestive hepatopathy. RESULTS: Liver fibrosis was mainly induced in the periphery of the liver and co-localized with distribution of liver congestion. Liver tumors were also induced in the periphery of the liver where liver congestion and fibrosis occurred. LMD-based RNA-sequencing revealed the upregulation of extracellular matrix/collagen fibril-, wound healing-, angiogenesis-, morphogenesis-, and cell motility-related signaling pathways in periphery of liver compared with liver center. CONCLUSIONS: Our findings showed the experimental relevance of liver congestion, fibrosis, and tumor development in congestive hepatopathy, and may provide important locational information. Macroscopic regional disparity observed in this murine model should be considered to manage patients with congestive hepatopathy.

2.
Hepatology ; 76(1): 112-125, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855990

RESUMO

BACKGROUND AND AIMS: Chronic liver congestion reflecting right-sided heart failure (RHF), Budd-Chiari syndrome, or Fontan-associated liver disease (FALD) is involved in liver fibrosis and HCC. However, molecular mechanisms of fibrosis and HCC in chronic liver congestion remain poorly understood. APPROACH AND RESULTS: Here, we first demonstrated that chronic liver congestion promoted HCC and metastatic liver tumor growth using murine model of chronic liver congestion by partial inferior vena cava ligation (pIVCL). As the initial step triggering HCC promotion and fibrosis, gut-derived lipopolysaccharide (LPS) appeared to induce LSECs capillarization in mice and in vitro. LSEC capillarization was also confirmed in patients with FALD. Mitogenic factor, sphingosine-1-phosphate (S1P), was increased in congestive liver and expression of sphingosine kinase 1, a major synthetase of S1P, was increased in capillarized LSECs after pIVCL. Inhibition of S1P receptor (S1PR) 1 (Ex26) and S1PR2 (JTE013) mitigated HCC development and liver fibrosis, respectively. Antimicrobial treatment lowered portal blood LPS concentration, LSEC capillarization, and liver S1P concentration accompanied by reduction of HCC development and fibrosis in the congestive liver. CONCLUSIONS: In conclusion, chronic liver congestion promotes HCC development and liver fibrosis by S1P production from LPS-induced capillarized LSECs. Careful treatment of both RHF and liver cancer might be necessary for patients with RHF with primary or metastatic liver cancer.


Assuntos
Carcinoma Hepatocelular , Insuficiência Cardíaca , Neoplasias Hepáticas , Doenças Vasculares , Animais , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Fibrose , Humanos , Lipopolissacarídeos , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Lisofosfolipídeos/metabolismo , Camundongos , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
3.
Hepatol Commun ; 5(8): 1437-1447, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430787

RESUMO

Congestive hepatopathy (CH) with chronic passive congestion is characterized by the progression of liver fibrosis without prominent inflammation and hepatocellular damage. Currently, the lack of reliable biomarkers for liver fibrosis in CH often precludes the clinical management of patients with CH. To explore fibrosis biomarkers, we performed proteome analysis on serum exosomes isolated from patients with CH after the Fontan procedure. Exosomal cluster of differentiation (CD)44 levels were increased in patients with CH compared to healthy volunteers and was accompanied by increases in serum levels of soluble CD44 and CD44 expression in the liver. To address the roles of CD44 in CH, we established a mouse model of chronic liver congestion by partial inferior vena cava ligation (pIVCL) that mimics CH by fibrosis progression with less inflammation and cellular damage. In the pIVCL mice, enhanced CD44 expression in hepatic stellate cells (HSCs) and deposition of its ligand hyaluronan were observed in the liver. Blood levels of soluble CD44 were correlated with liver fibrosis. The blockade of CD44 with specific antibody inhibited liver fibrosis in pIVCL mice and was accompanied by a reduction in S100 calcium-binding protein A4 expression following activation of HSCs. Conclusion: Chronic liver congestion promotes fibrosis through CD44. This identifies CD44 as a novel biomarker and therapeutic target of liver fibrosis in patients with CH.

4.
BMC Gastroenterol ; 21(1): 55, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33557759

RESUMO

BACKGROUND: Pathological angiogenesis is involved in the development of hepatocellular carcinoma. In patients with chronic hepatitis C (CHC), the level of angiogenic factor angiopoietin (ANGP)-2 is reported to be increased in the blood, correlating with fibrosis. In this study, we aimed to clarify whether blood ANGP-2 is useful as a biomarker for liver angiogenesis and fibrosis in CHC patients and to further reveal the relationship between such pathology in a carbon tetrachloride (CCl4)-treated liver fibrosis mouse model. METHODS: Plasma levels of ANGP-2, expression of a liver sinusoidal endothelial cell (LSEC) marker (CD31), collagen deposition (Sirius Red staining) in the liver, clinical fibrosis markers (Mac-2 binding protein glycosylation isomer, virtual touch quantification, and liver stiffness measurement), and liver function (albumin bilirubin score) were examined in CHC patients. To determine the effects of an anti-angiogenic agent on liver fibrosis in vivo, sorafenib was administered to the CCl4-treated mice (BALB/c male). RESULTS: The plasma levels of ANGP-2 were increased in CHC patients compared to healthy volunteers and decreased by the eradication of hepatitis C with direct-acting antivirals. In addition, plasma ANGP-2 levels were correlated with CD31 expression, collagen deposition, clinical fibrosis markers, and liver function. Sorafenib inhibited liver angiogenesis and fibrosis in the CCl4-treated mice and was accompanied by decreased ANGP-2 expression in LSECs. CONCLUSIONS: ANGP-2 may serve as a useful biomarker for liver angiogenesis and fibrosis in CHC patients. In addition, angiogenesis and fibrosis may be closely related.


Assuntos
Angiopoietina-2 , Hepatite C Crônica , Angiopoietina-2/uso terapêutico , Animais , Antivirais/uso terapêutico , Tetracloreto de Carbono , Hepatite C Crônica/complicações , Hepatite C Crônica/patologia , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...